ATOMIC BALTIC

Atomic Threats
In The Baltic Sea Region

- Mielno, January 26, 2015 -
Contents

1. Baltic Sea – A unique community
2. Aspects of radioactive threats
3. New construction overview
4. Atomic policies and anti-nuclear movements
5. ATOMIC BALTIC campaign
6. Conclusions
Baltic Sea – A unique community

The Baltic Sea is the world's most radioactive sea, HELSINKI COMMISSION reported in 2007.

- highest concentrations of manmade radiation compared to other water bodies in the world, e.g.:
 - 40 times more Cs-137 than in Northeast Atlantic
 - 10 times more Cs-137 than in North Sea
 - sediments most rad.: Bothnian Sea & Gulf of Finland
- only 1-2 % water exchange with Atlantic per year, thus most radioactive particles remain & accumulate
Water makes the communities in the watershed of the Baltic Sea close neighbours - though some are about 1,000 kilometers away. The sea is a food source for millions of people, and an important recreation area for many more. And it is a transport medium for poisonous emissions from more than 60 atomic plants discharging pollutants to water and air. Thus, the Baltic Sea is connecting needs and interests of human populations of a wide area forming an unique community.
- 1980s estimated total concentrations in Baltic Sea sediments: 277 TBq Cs-137, 12 TBq Sr-90, 15 TBq Pu-239/Pu-240
- 1998 evaluation: 1,940-2,210 TBq Cs-137, 26 TBq Sr-90, 15.3 TBq Pu-239/Pu-240
 (based on reviewed data input of member states)
- early 2000s: 2,100-2,400 TBq Cs-137, 26 TBq Sr-90, 15.3 TBq Pu-239/Pu-240
Aspects of radioactive threats

Historic main polluters of the Baltic Sea:

- nuclear disaster in Chernobyl 1986 (82% Cs-137)
- '60s + '70s atmospheric atomic weapons tests (14% Cs-137)
- Sellafield plant's discharges to Irish Sea traceable in Baltic Sea (4% Cs-137)

![Graph showing Cs-137 in fish concentrations in different regions.](http://atomicbaltic.nuclear-heritage.net)
today's polluters of the Baltic Sea:

- nuclear power plants (NPPs)
- atomic waste repositories
- uranium mining and exploration
- nuclear shipments across the sea
- other facilities
Radiation accidents impacting the Baltic Sea region

- 1974: explosion of radioactive gases tank at Leningrad I-1 NPP (RUS)
- 1974: incident at Ringhals-2 NPP (S)
- 1974: accident at Leningrad I-1 NPP with three people killed (RUS)
- 1975: fire at Greifswald NPP (GDR/D) – INES 3
- 1975: incident at Ringhals-1 and Ringhals-2 NPP (S)
- 1975: radiation leakage over one month at Leningrad I-1 NPP (RUS)
- 1976: sabotage attempt with explosive prevented at Ringhals NPP (S)
- 1976: fire at Leningrad NPP (RUS)
- 1979: fire at Leningrad NPP (RUS)
- 1986: nuclear disaster in Chernobyl (SU/UA) - INES 7
- 1989: accident at Greifswald NPP (GDR/D)
- 1990: accident at Leningrad I-1 NPP (RUS)
- 1991: accident at Leningrad I NPP (RUS)
- 1992: accident at Sosnovy Bor nuclear plant leaking radioactive gases and iodine (RUS)
- 1996: radiation leakage at Leningrad I NPP (RUS)
- 2000: incident at Leningrad I-1 NPP (RUS)
- 2000: radiation leakage at Leningrad I NPP (RUS)
- 2006: fire at Ringhals-3 NPP (S)
- 2006: incident at Forsmark NPP (S) – INES 2
- 2007: incident at Ringhals-3 NPP (S)
- 2007: incident at Forsmark NPP (S)
- 2009: incident at Leningrad I-3 NPP (RUS)
- 2011: incident at Oskarshamn-2 NPP (S)
- 2015: accident at Leningrad-2 NPP (RUS)

This is an incomplete list of incidents and accidents. Additionally for Olkiluoto NPP (FIN):
94 x INES 1, 7 x INES 2 (1977-2008)
Chernobyl disaster

- Chernobyl NPP unit 4 exploded April 26, 1986
- located in Ukraine, close to Belarusian border
- 500,000 people + 485 villages relocated, >500,000 victims
- biggest Baltic Sea polluter;
- most affected marine area
- radioactive cloud travelled north -> strong deposition
- Cs-137 first dispersed directly onto sea surface
- Radionuclides came from entire drainage area and from surrounding terrestrial + coastal areas due to runoff, river discharges + coastal currents
- Major radioactivity deposited in sediments
- Total input from Chernobyl to Baltic Sea ~4,100-5,100 TBq Cs-137 + 80 TBq Sr-90 (1991)
- 1/2 of Chernobyl Cs-137 in seabed; strongest accumulation first 5-6 years, ongoing process
Atmospheric atomic weapons tests

- tests significantly increased background radiation, partly single detections of bombs
- most tests carried out 1955-1958 + 1961-1962
- SU test site for instance Novaya Zemlya (130 tests)
- total depositions of weapons tests into Baltic Sea: ~900 TBq Cs-137 + ~600 TBq Sr-90 (1991)
- 1963: tests reduced; 1980: no atmospheric tests
Reprocessing units

- relevant impacts by Sellafield (UK) and La Hague (F) plants
- discharges of effluents containing numerous radionuclides to sea; peaks in 1970s + 1980s
- inflow to Baltic Sea through Danish Straits
- currently discharges decreased considerably
Nuclear facilities

- additional releases to Baltic Sea mainly by NPPs, fuel fabrication plants, atomic waste facilities, research facilities and military installations
Nuclear Power Plants

- **impacts** due to discharges to water and air; accident risk, require nuclear shipments

- **in operation**: 17 reactors (FIN, RUS, S)

- **closed**: 14 reactors (D, LT, S)

- **proposed**: 10 reactors (BY, FIN, LT, PL, RUS)
 - replacements: „1“ reactor (S)

- **construction**: 6 reactors (BY, FIN, RUS)
Atomic waste repositories

- **impacts** due to discharges to water and air; accident risk, require nuclear shipments; long-term safety issues

- **in operation**: 6 final repositories (EST, FIN, LV, PL, S), 3 temporary repositories (D, PL, S), 2 laboratories (S)

- **proposed**: 4 final repositories (DK, FIN, RUS, S)

- 6 unclear repositories (LT)
Uranium mining and exploration

- **impacts** due to discharges to water and air; accident risk, require nuclear shipments

- **in operation**: 5 extraction facilities \((\text{FIN, S}^*)\), 1 (uranium) mine \((\text{FIN})\)

- **exploration**: Finland \((15^*)\), Russia \((1)\), Sweden \((\sim300^*)\)

- **closed**: 18 uranium mines \((\text{EST, FIN, PL, S})\), 1 mill \((\text{PL})\), 5 mill tailings storage sites \((\text{DK, EST, FIN, PL, S})\)
- **proposed**: 13 mines (FIN, PL, RUS, S), 1 extraction plant (FIN)

- **deposits**: Finland (54*), Poland (8), Russia (2), Sweden (13)
Other facilities

- **impacts** due to discharges to water and air; accident risk, require nuclear shipments

- **in operation**: 3 research reactors (N, PL, RUS), 4 research & experimental sites (D, DK, PL, S), 4 other factories (FIN, RUS, S)

- **closed**: 1 military center (RUS), 22 research reactors (BY, D, DK, EST, FIN, LV, N, PL, S)

- **under construction**: floating NPP „Akademik Lomonosov“ (Saint Petersburg/RUS), 1 fusion reactor (D)
Atomic transports across Baltic Sea

- **impacts** due to accident risk; shipments via freighters and ferry lines
- **freights** include fuel elements, nuclear waste, uranium, UF6, partly next to explosives and other hazardous material
- **hundreds of shipments** every year including hazardous cargos
ship collision hot spots: Kiel Canal (D), Skagerrak (DK), islands like Rügen (D), e.g.:

→ 2013 „Atlantic Cartier“ fire in Hamburg – similar shipments operate in Baltic Sea

→ 2013 „Mikhail Lomonosov“ collision with sailboat near Rügen island

→ 2001 „Bugulma“ collision in Kiel Canal
New construction overview

- **NPPs**: 10 reactors (BY, FIN, LT, PL, RUS), 1 reactor replacement (S)
- **repositories**: 4 final repositories (DK, FIN, RUS, S)
- **uranium plants**: 13 mines (FIN, RUS, S), 1 extraction plant (FIN)
- **other facilities**: „Akademik Lomonosov“ floating NPP (RUS), 1 fusion reactor (D)
Atomic policies in Baltic Sea area and anti-nuclear movements

- Estonia
- (Belarus)
- Denmark
- Finland
- (Germany)
- Latvia
- Lithuania
- (Norway)
- Poland
- (Russia)
- Sweden
ATOMIC BALTIC campaign

network/project of anti-nuclear groups & activists in the Baltic Sea watershed, including Austrian and Dutch organizations sharing their experiences and knowledge.

Goals:

→ strengthening local anti-nuclear struggles
→ connecting activists to each other
→ starting up new initiatives
→ supporting campaigns against nuclear business
- ATOMIC BALTIC network/project provides a platform for exchange including internet tools, updateing Skype conferences and bimonthyl working meeting:
 http://AtomicBaltic.nuclear-heritage.net

- overall, ATOMIC BALTIC aims on contributing to the worldwide & immediate shutdown of all atomic facilities

- using the example of the Baltic Sea we want to raise public awareness and put pressure on atomic industry & decision makers
Conclusions

>60 atomic facilities in the Baltic Sea's watershed, risky shipments of radioactive material and the historic impacts of civil & military nuclear industry pose serious threats on people, other beings & environment.

All atomic installations must be shut down immediately, new projects have to be cancelled. The historic legacies require consequently safety-orientated handling.
Thank you for your attention!
some valuable resources:

- **BSEP110.pdf** – *Long-lived radionuclides the seabed of the Baltic Sea (HELCOM)*

- **HazardousSubstances_MM2007.pdf** – *Towards a Baltic Sea unaffected by Hazardous Substances. HELCOM Overview 2007 (HELCOM)*

- http://www.greenworld.org.ru

- http://www.wise-uranium.org

- http://www.nuclear-waste.eu
external references:

- http://en.wikipedia.org/wiki/Nuclear_weapons_testing
- http://en.wikipedia.org/wiki/Nuclear_power_in_Russia
- http://en.wikipedia.org/wiki/Leningrad_nuclear_power_plant