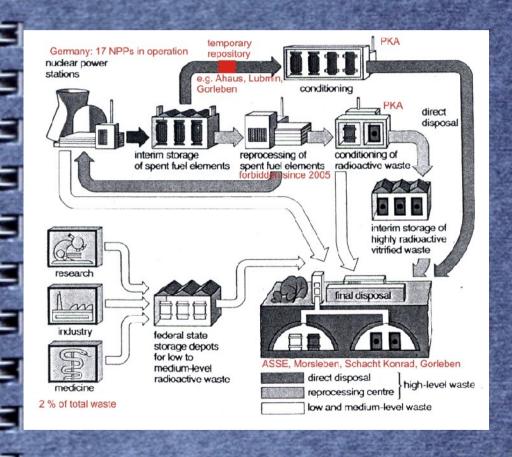
Nuclear Waste Disposal Disaster in Germany

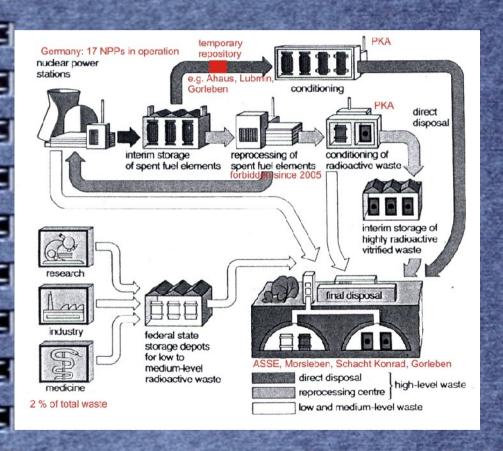
What it is NOT about

This presentation is about nuclear waste directly produced in Germany, not:


- <u>Uranium waste</u> (containing > 85 % of original radioactivity left in mining areas),
- Waste produced by fuel fabrication for German NPPs in other countries (conditioning, enrichment, fuel element fabrication),
- Depleted uranium sent to Russia from UAA Gronau.

Much more nuclear waste is caused by Germany's nuclear industry than usually regarded.

Table of Contents


- 1. General Nuclear Situation in Germany
- 2. German Final Disposal Sites
 - a)ASSE II
 - b)Morsleben
 - c)Schacht Konrad
 - d)Gorleben
- 3. General Disposal Challenges
- 4. Special Disposal Challenges
- 5. Conclusions

General Situation in Germany

- 9 reactors in operation (only 7 online)
- by 2005 most HAW to La Hague & Sellafield
 - return transports fromLa Hague 1996, fromSellafield 2014 expected
- later <u>"reprocessing"</u>
 prohibited (only new contracts concerned)
 - − waste for ~15 years

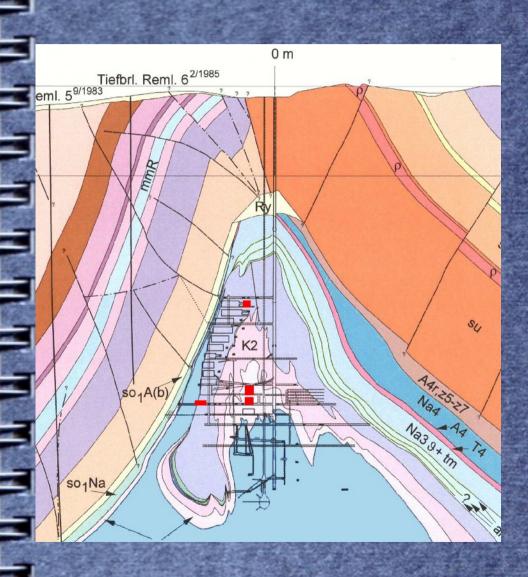
General Situation in Germany (II)

- since 2005: direct final disposal required
 - but: NO final repository exists
- only ~2 % of total radioactive waste comes from medicine, research
 - + other industries

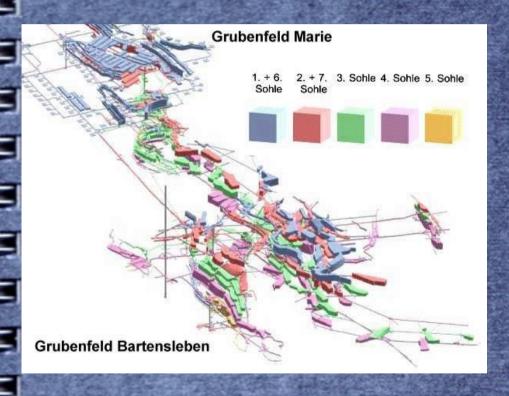
General Situation in Germany (III)

- waste facilities:
 - temporary repositories at several NPPs & nuclear factories
 - PKA Gorleben (not in operation)
 - temporary HAW
 repositories, e.g. Ahaus,
 Gorleben, Lubmin
 - <u>final disposal sites</u>: Asse
 II, Morsleben, Schacht
 Konrad, Gorleben

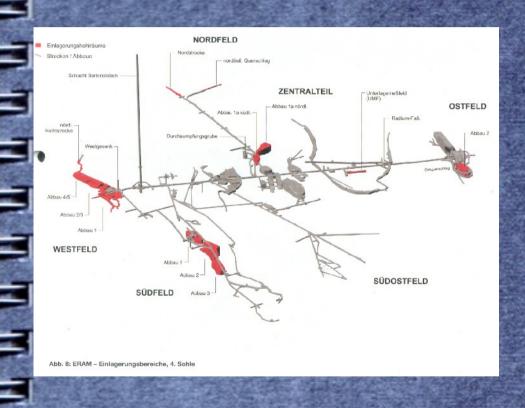
General Situation in Germany (IV)


- final disposal concepts:
 - <u>salt</u> rock + other geological formations
 - deep mine (more difficult: access, attacks, natural catastrophes, pristine=safety)
 - geological barrier provides safety
 - non-retrievable final disposal (costs, proliferation, safety)

German Final Disposal Sites: Asse II


- near Wolfenbüttel / Braunschweig (Lower Saxony)
- operation started 1965; stopped 1978/1995
- old salt mine; used for L/MAW + research
- barrels dumped into reposition cavities (many damaged)

Asse II (II)

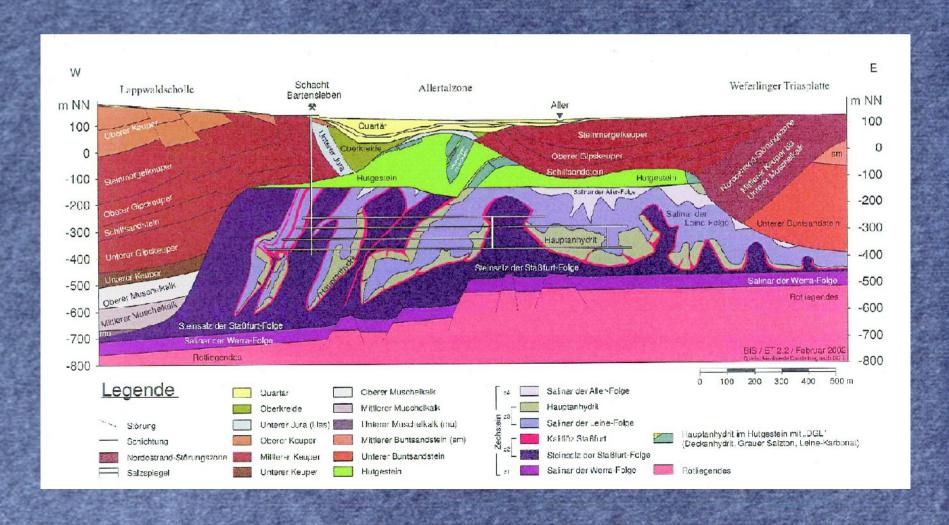

- safety issues: <u>water influx</u>
 (~11,500 litres/day), <u>collapse</u>
 - acute danger of complete flooding
- doesn't meet requirements of nuclear law / no public consultation
- continuously new scandals become public

Morsleben

- between Braunschweig and Magdeburg (Sachsen-Anhalt)
- formerly GDR's central final repository for L/MAW + planned HAW final repository
- operation started 1971; stopped 1998
- old salt mine

Morsleben (II)

- solid waste in barrels stacked or dumped in barrels or loosely into reposition cavities
- liquids sprayed onto layer of lignite ashes (assuming mixture would solidify)
- total amount L/MAW: ~36,000 m³

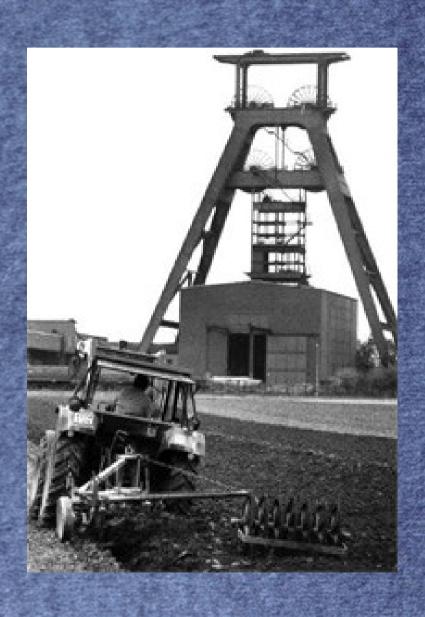

Morsleben (III)

- >6,000 radiation
 sources (partly HAW)
 sunk in drill holes
- safety issues:
 - water influx: >20 known locations; at least one has connection to biosphere
 - collapse: >4,000 t cavein 2001; 500 t cave-in early 2009; 20,000 t cave-in expected soon by operator

Morsleben (IV)

 unsuitable geological conditions (potassium salt layers, main anhydrite)

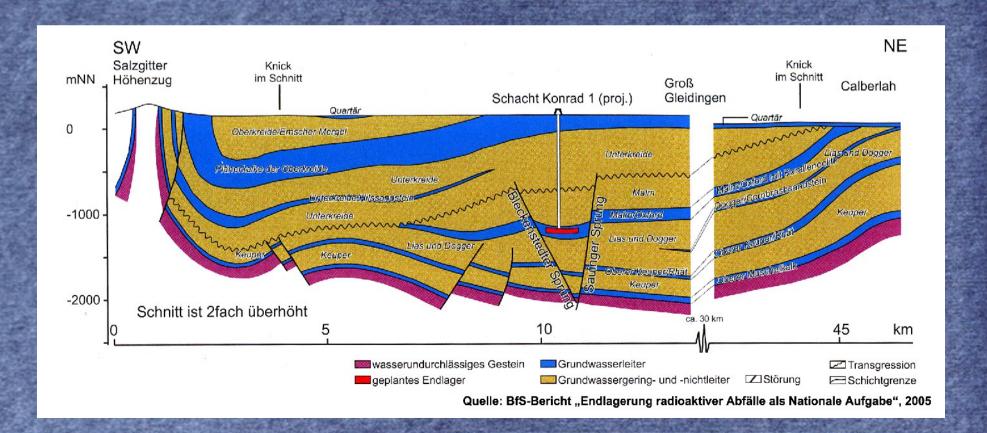
Asse II & Morsleben: Operator's Failures


Both Asse II and Morsleben are affected by problems caused by the operator of the repositories:

- inventory unknown
- public cheated about inventory & safety issues
- safety issues wellknown from the very beginning
- no public consultations in site selection
- old mines (over 100 years) not suitable for final disposal of nuclear waste
- extension & situation of cavities not completely and not in detail known

Asse II & Morsleben: Operator's Failures (II)

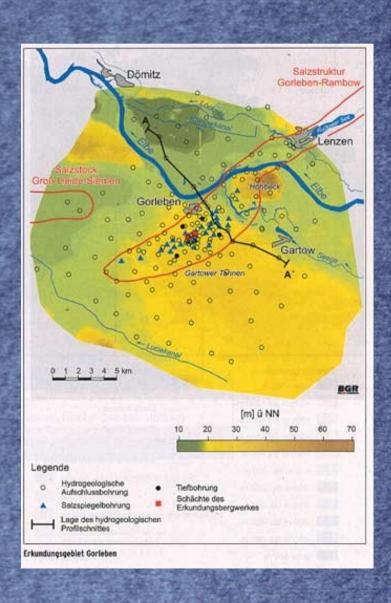
- Morsleben: operator increased threat of collapse by backfilling higher levels almost 1,000,000 m³ of ,,salt-concrete" onto deposition cavities of deeper levels
- Asse II: to prevent complete collapse operator wants to flood with 1.200.000 m³ MgCl₂-solution
 - -> radioactivity would quickly escape the repository
 - -> recovery of atomic waste would be impossible


Schacht Konrad

- near Salzgitter / Braunschweig (Lower Saxony)
- operation approval:2002 (still offline)
- old iron ore mine;L/MAW disposal
- known safety issues:
 water-carrying layers
 with connection to
 biosphere

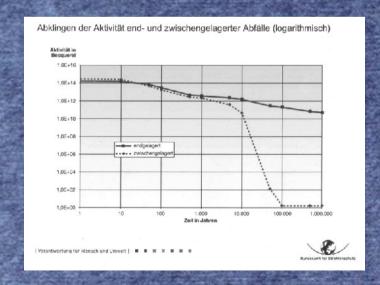
Schacht Konrad (II)

- Known safety issues:
 - water-carrying layers with connection to biosphere
 - unsuitable rock formations



Gorleben

- in Wendland (Lower Saxony)
- "research mine"
- no public consultation yet
- salt rock formation


Gorleben (II)

- Known safety issues:
 - water-carrying layers
 - no mighty & gaplesslayer of clay
 - saltdome not at rest and still rises
 - running salt-dissolution

General Disposal Challenges

- Estimated longterm safety necessary for at least 1,000,000 years
 - no-one knows how society & technology will look like
 - no-one knows how *geological formations* will develop by that time (at least not in detail)

General Disposal Challenges (II)

- No complete knowledge about geological rock formations
 & layers possible
 - destructive methods (e.g. drilling) create knowledge only about small areas -> remaining parts only estimated
 - non-destructive methods can't show everything –
 especially not details of rock layers / water ways
- Chemical reactions of waste / materials of container / surrounding rock formations / water not really known
 - every few years new knowledge about unexpected complications found in labority experiments

General Disposal Challenges (III)

- No container is longterm safe against corrosion / damages
 - maybe some 5-70 years
 - copper (Scandinavian KBS model): threats by oxygen and pressure
 - steal (German Pollux model): threats by water and pressure

General Disposal Challenges (IV)

- No technical barrier (bentonite, salt-concrete) is <u>longterm safe</u>
 - water will always find ways at the seams between natural rock formations and technical barrier
 - reactions between water / barrier material / rock formation material unknown
 - Pressure of surrounding rock formations will form & damage technical barriers
- No experimental proof of safety possible (millions of years necessary)
 - only small labority experiments for some years with longterm estimation possible

Special Disposal Challenges

- Certain rock formation layers <u>offer points for attacks</u> of water influx (e.g. potassium salt)
- Historical water inclusions can damage rock formations
 - increase risk of escaping radioactive particles
- Cave-ins can cause <u>further damages</u> in rock formations
 - increase risk of escaping radioactive particles
 - complete backfilling impossible at least 10 % 20
 will be kept open

Special Disposal Challenges (II)

- Even a pure, not fissured rock formation will become <u>damaged by drilling</u> / exploration & construction of the repository
 - can't completely be repaired again
- All risk models <u>only assumptions</u>
 - no experience with longterm disposal
- New problem: climate change effects

Special Disposal Challenges (III)

- How to keep knowledge of radioactive threat?
 - human experience with longterm knowledge only by religions: e.g. Christianity shows several changes in interpretation & translation within 2,000 years
 - even today former *understanding* of warnings about dangerous places (e.g. Australia – uranium) got *lost or* people don't care about it anymore

Conclusions

- Longterm safe storage of radioactive waste is impossible
- <u>Knowledge</u> about dangerous reactions & developments <u>remains uncertain</u>
- <u>Operators</u> of repositories <u>& authorities</u> often unreliable

Conclusions (II)

Nowhere in the world a safe solution for the longterm radioactive waste has been found for certain reasons.

And it is *not possible* to do safe final disposal as well for general reasons.

Nuclear waste must not be produced – all NPPs have to be shut down immediately and worldwide.