Difference between revisions of "Uranium"

From Nuclear Heritage
Jump to navigationJump to search
(accident in Indian uranium facility)
m
Line 76: Line 76:
 
Jadugoda, located in the mineral-rich Singhbum district of Jharkhand, is the chief source of Uranium in India, providing fuel for  the nuclear reactors. However, the uranium comes at a colossal human cost. In this case, those paying the price are adivasis (indigenous population), the Santhal, Munda and Ho tribes. Due to the proximity of the mine, a large number of villagers suffer from cancer, skin diseases, physical deformities, blindness, brain damage, disruption of menstrual cycle or loss of fertility. Villagers, evicted from their lands, work as miners and are exposed to a heavy dose of radiation. Uranium Corporation of India Limited (UCIL), responsible for operating the mine refutes the allegations and refuses to acknowledge the problems. However, independent researchers believe that it is difficult to conceive of any reason, other than radiation, for the human and environmental catastrophe.<ref>http://www.jadugoda.net/ , November 19, 2009</ref>
 
Jadugoda, located in the mineral-rich Singhbum district of Jharkhand, is the chief source of Uranium in India, providing fuel for  the nuclear reactors. However, the uranium comes at a colossal human cost. In this case, those paying the price are adivasis (indigenous population), the Santhal, Munda and Ho tribes. Due to the proximity of the mine, a large number of villagers suffer from cancer, skin diseases, physical deformities, blindness, brain damage, disruption of menstrual cycle or loss of fertility. Villagers, evicted from their lands, work as miners and are exposed to a heavy dose of radiation. Uranium Corporation of India Limited (UCIL), responsible for operating the mine refutes the allegations and refuses to acknowledge the problems. However, independent researchers believe that it is difficult to conceive of any reason, other than radiation, for the human and environmental catastrophe.<ref>http://www.jadugoda.net/ , November 19, 2009</ref>
  
'''On December 24, 2006''', one of the '''pipes carrying radioactive wastes''' from the uranium mill to a storage dam '''had burst''', discharging highly toxic wastes into a nearby creek.  When released into the environment in such a hazardous manner, the radioactive wastes are deadly to the people living in the surrounding area as well as their land and water.<br/>
+
On '''December 24, 2006''', one of the '''pipes carrying radioactive wastes''' from the uranium mill to a storage dam '''had burst''', discharging highly toxic wastes into a nearby creek.  When released into the environment in such a hazardous manner, the radioactive wastes are deadly to the people living in the surrounding area as well as their land and water.<br/>
 
The accident occurred in Dungridih – a small village near Jadugoda inhabited largely by displaced families whose lands were acquired to construct two of the three storage dams, also known as tailings ponds.  The tailings ponds store all the radioactive wastes generated by the milling of uranium ore in Jadugoda.  Based on the experience of similar accidents in other countries, however, the negative effects on human and environmental health will impact communities living downstream, perhaps even hundreds of kilometers away.  Therefore, it is imperative that the Uranium  Company of India Limited (UCIL) – the owner and operator of the uranium mine, mill, pipes, and tailing ponds in Jadugoda – immediately inform downstream communities of the disaster and prevent them from using the creek water until it is certifiably safe.  Until the creek is safe to use, UCIL should supply water to the impacted communities so that they can continue their necessary activities such as bathing and washing clothes.  Also, UCIL may need to provide compensation for families living downstream whose livelihoods depend upon the stream, a tributary to the Subarnarekha River, either for irrigation or fishing.<ref>http://jadugoda.net/Accidents/index.html , November 19 2009</ref>
 
The accident occurred in Dungridih – a small village near Jadugoda inhabited largely by displaced families whose lands were acquired to construct two of the three storage dams, also known as tailings ponds.  The tailings ponds store all the radioactive wastes generated by the milling of uranium ore in Jadugoda.  Based on the experience of similar accidents in other countries, however, the negative effects on human and environmental health will impact communities living downstream, perhaps even hundreds of kilometers away.  Therefore, it is imperative that the Uranium  Company of India Limited (UCIL) – the owner and operator of the uranium mine, mill, pipes, and tailing ponds in Jadugoda – immediately inform downstream communities of the disaster and prevent them from using the creek water until it is certifiably safe.  Until the creek is safe to use, UCIL should supply water to the impacted communities so that they can continue their necessary activities such as bathing and washing clothes.  Also, UCIL may need to provide compensation for families living downstream whose livelihoods depend upon the stream, a tributary to the Subarnarekha River, either for irrigation or fishing.<ref>http://jadugoda.net/Accidents/index.html , November 19 2009</ref>
  

Revision as of 12:59, 19 November 2009

Australia: Open pit mine (Ranger Mine)
http://strahlendesklima.de
Australia: Tailing Ponds with nuclear waste (Olympic Dam Mine)
http://strahlendesklima.de
Containers with "Yellow Cake" (Uraniumoxide) (Olympic Dam Mine)
http://strahlendesklima.de
Truck driving into the Olympic Dam uranium mine
http://strahlendesklima.de
Uranium mining in Australia
http://strahlendesklima.de
Nuclear caution sign at Olympic Dam mine (AU)
http://strahlendesklima.de
Water supply for the Ranger mine (AU)
http://strahlendesklima.de
Water pipeline to the Ranger mine (AU)
http://strahlendesklima.de
Shortcut to this page: http://uranium.nuclear-heritage.net

Uranium Reserves

The world's biggest uranium reserves are currently located in Canada, Australia, Kazakhstan, Russia, Niger, Namibia, and Uzbekistan.[1]

In Europe today no uranium is mined apart from small amounts in the Czech Republic and Romania.[1]

Since the world market price of uranium oxide (U3O8) has been tripled between 2000 and 2003 to 66 EUR per kilogram a new run to exploit even poor uranium reserves has been started[2]. Additionally according to the IAEA the demand for uranium is much higher than the uranium mined worldwide since many years. By now this demand could be substituted by the old nuclear weapon's fission materials, but this "resource" will be mostly exploited soon.


Closed Uranium Mines

Germany

  • Former GDR: Wismut[3]
    • was the 3rd biggest uranium producer in the world until 1990[1]
    • in operation: 1946-1990
    • underground and open cast mining of uranium in former GDR
    • 1,200 million tons extracted mineral mass
    • 200 million tons processed
    • 1,000 million tons tailings
    • about 500,000 persons occupied
    • 15,000 accepted cases of silicosis (German: "Staublunge")
    • 5,600 accepted cases of lung cancer
    • reclamation costs: 7.5 billion EUR (publically paied)
      • tailings have been covered, mines filled
  • Former FRG: Menzenschwand[1]
    • located in the Schwarzwald in Western Germany - was a very small uranium mine until 1991

France

    • 210 uranium mines have been closed until 2001[1]

Portugal

  • 1909 the first licence for uranium mining was granted; after World War II the Portuguese uranium oxide was delivered as well to the British as to the US nuclear industry[4]
  • by 1991 62 uranium mines have been exploited in Portugal[4]
  • Urgeiriça (near Viseu): closed in 1991[4]


Uranium Mines in Operation

Australia

  • Olympic Dam[5]:
    • Olympic Dam, located in the South Australian desert outside the town of Roxby Downs, is Australia's biggest uranium resource. The mine is on the land of the Kokatha people and draws water from the land of the Arabunna people.
    • In 2005 BHP Billiton (BHPB) took over Western Mining Corporation inheriting not only ownership of Olympic Dam but the Roxby Indenture Act. This allows for extravafant exceptions to environmental and cultural heritage legislation protection.
    • BHPB plans to make Olympic Dam the largest open-cut mine in the world by digging a pit of about 20 cubic kms. Export of uranium is expected to increase from an average of 4000 tonnes per year to 19,000 tonnes per year and production of copper, gold and silver is also expected to increase.
    • Tailings: The production of radioactive tailings, stored above ground, will increase to 70 million tonnes annually. Currently, tailings are producted at a rate of 10 million tonnes annually and the stockpile amounts to 100 million tonnes. The tailings dam contain a toxic, acidic soup of radionuclides and heavy metals and are responsible for large numbers of bird deaths - over 100 deaths in a four-days period in 2004. There have been numerous spills and leaks - most significantly in 1994, when it was revealed that three billion litres had leaked from the tailings dams over two years.
    • Water: BHP Billiton proposes an increase in water consumption from 35 million litres daily (from the Great Artesian Basin) to 150 million litres daily (up to 42 million litres from the Great Artesian Basin, the remainder from a proposed desalination plant at Port Bonython). The water take from the Great Artesian Basin had adverse impacts on the precious Mound Springs and needs to be reduced or stopped altogether. BHP Billiton pays nothing for its massive water take despite recording a profit of A$ 22 billion in 2007/08.
    • Electricity: Electricity demand for the mine will increase from 120 megawatts to 690 megawatts - equivalent to 42 % of South Australia's current total electricity consumption. Electricity will be supplied from the SA grid and/or an on-site gas-fired plant, with no government requirement or company plans for any electricity to be supplied from renewable energy sources.
    • Nuclear Weapons Proliferation: There is an unacceptable risk of uranium from Roxby Downs finding its way into nuclear weapons. Accounting discrepancies involving Australia's uranium exports are common. International Atomic Energy Agency Director-General Dr. Mohamed El Baradei has acknowledged that the IAEA's rights of inspection are "fairly limited", that the 'safeguards' system is subject to "vulnerabilities" and "clearly needs reinforcement", that efforts to improve the system have been "half-hearted", and that the safeguards system operates on a "shoestring budget ... comparable to a local police department". Uranium production at Roxby is expected to increase to 19,000 tonnes per year, sufficient to fuel 95 power reactors which will produce 18.5 tonnes of plutonium each year - enough for 2,850 nuclear weapons each year.

India

Jadugoda

Jadugoda, located in the mineral-rich Singhbum district of Jharkhand, is the chief source of Uranium in India, providing fuel for the nuclear reactors. However, the uranium comes at a colossal human cost. In this case, those paying the price are adivasis (indigenous population), the Santhal, Munda and Ho tribes. Due to the proximity of the mine, a large number of villagers suffer from cancer, skin diseases, physical deformities, blindness, brain damage, disruption of menstrual cycle or loss of fertility. Villagers, evicted from their lands, work as miners and are exposed to a heavy dose of radiation. Uranium Corporation of India Limited (UCIL), responsible for operating the mine refutes the allegations and refuses to acknowledge the problems. However, independent researchers believe that it is difficult to conceive of any reason, other than radiation, for the human and environmental catastrophe.[6]

On December 24, 2006, one of the pipes carrying radioactive wastes from the uranium mill to a storage dam had burst, discharging highly toxic wastes into a nearby creek. When released into the environment in such a hazardous manner, the radioactive wastes are deadly to the people living in the surrounding area as well as their land and water.
The accident occurred in Dungridih – a small village near Jadugoda inhabited largely by displaced families whose lands were acquired to construct two of the three storage dams, also known as tailings ponds. The tailings ponds store all the radioactive wastes generated by the milling of uranium ore in Jadugoda. Based on the experience of similar accidents in other countries, however, the negative effects on human and environmental health will impact communities living downstream, perhaps even hundreds of kilometers away. Therefore, it is imperative that the Uranium Company of India Limited (UCIL) – the owner and operator of the uranium mine, mill, pipes, and tailing ponds in Jadugoda – immediately inform downstream communities of the disaster and prevent them from using the creek water until it is certifiably safe. Until the creek is safe to use, UCIL should supply water to the impacted communities so that they can continue their necessary activities such as bathing and washing clothes. Also, UCIL may need to provide compensation for families living downstream whose livelihoods depend upon the stream, a tributary to the Subarnarekha River, either for irrigation or fishing.[7]


Proposed Uranium Mines

Portugal

  • Nisa: near to the 3,600 inhabitants city the biggest not yet exploited uranium resource is situated; it had already been discovered in 1959; about six million tons of uranium ore can be found here - enough to produce some 650 tons of uranium oxide[4]


Uranium Facts

  • Volumes of greenhouse gases are emitted throughout the nuclear chain from mining, milling, transporting, building nuclear power plants and reprocessing uranium for use in weapons and nuclear power.[5]
  • Uranium is the heaviest of all minerals. The percentage of uranium to ore is quite small in commercially mined uranium, averaging 0.3 % in Australia but as high as 15 % in Canada. The ore is, therefore, milled to concentrate the uranium, resulting in a marketable product, uranium oxide (U3O8), also known as 'yellowcake'.[5]
  • Uranium isotopes remain radioactive for millions of years:[5]
    • U238: (also known as depleted uranium) has a half-life (the time it takes for it to lose half its radioactivity) of 4.5 billion years
    • U235: 704 million years
    • U234: 245,000 years
  • Radon is a radioactive gas released from uranium decay.[5]
  • In Australia three kinds of mining process are used to extract uranium: underground (as currently used at Olympic Dam), surface (open pit, as used at Ranger), or acid solution/in-situ leach (as used at Beverley). Tunnel mining poses risks to both human health and environment. Besides the risk of collapse and poor or dangerous air quality in underground operations, uranium mines present a dangerous scenario for workers due to exposure to radon gas and uranium dust.[5]
  • After ore extraction, uranium must be separated from the other minerals in the matrix. This is done by crushing and leaching the rock using water and sulfuric acid. This process uses enormous amounts of water which is contaminated with acid, unwanted minerals and leftover uranium, and contains long lived decay products which continue to pose a risk to health and environment. It is left on site in tailing dams, in an attempt to minimise dust and because there is no safe means of disposal. The sludge that tailing water covers is 85% as radioactive as the uranium extracted and it continues to release the deadly radon gas.[5]
  • Tailing dams all over the world have had leakage problems. There are many documented instances of increased exposure to radiation in people living downstream from these tailings damas through consuming contaminated water, fish and crops. Local wildlife, particularly water birds, have also been killed by drinking the tailings water.[5]
  • The health and environment effects are felt in many mining communities worldwide. Recent reports from China indicate that there are both serious health impacts on communities living near uranium mines and grave consequences for workers who speak out on the issue. Navajo homelands in the US are a notable example of former mining communities where residents now experience high lung cancer rates. Over half of the groundwater is contaminated by defunct uranium mines.[5]
  • Workers and the community are exposed to serious health risks at all stages of the nuclear chain from mining to transport, use and disposal of nuclear materials including waste. Workers are at risk from radiation exposure through inhalation of radioactive dust or direct contamination from the mine. The permitted levels of radiation exposure considered 'safe' for workers and the public have dropped dramatically over the years as research indicates harmful effects still exist at much lower exposure levels than what was originally thought to be safe. It is now acknowledged that there is no safe level of radiation exposure that guarantees cancer will not be triggered.[5]
  • Globally, the nuclear industry has a history of developing uranium mines, nuclear tests, and waste dumps on indigenous people's lands against their wishes. Australia is not different. Unfortunately, lack of infrastructure and investment in remote areas, has allowed mining companies to pressure indigenous communities to permit mining on their sacred lands, in exchange for basic services like school and hospitals. Royalties are often an enticement in areas where poverty and lack of services prevail due to government neglect.[5]


Information

  • WISE Uranium Project - WISE Uranium Project is part of World Information Service on Energy. It covers the health and environmental impacts of nuclear fuel production
  • uranium network English/German
  • Uranium Watch - a Urah / USA based information service on Uranium
  • SEA-US Inc. - The sustainable energy & anti-uranium service

Local Resistance

Materials


Action


Uranium Mining Images

Uranium Mining in Australia


Olympic Dam Mine


Ranger Mine


Uranium Mining in India


Uranium Companies


Finde more articles about Uranium on the Nuclear Heritage Network webpage.


  1. 1.0 1.1 1.2 1.3 1.4 .ausgestrahlt: Der schmutzige Atom-Brennstoff. Fragen und Antworten zur Herkunft des Urans. Mai 2009
    http://www.ausgestrahlt.de/fileadmin/user_upload/luki/der-schmutzige-atombrennstoff.pdf
  2. Cite error: Invalid <ref> tag; no text was provided for refs named NorbertSuchanek
  3. Source: lecture "Health effects of uranium mining workers and residents, the experience in Germany" of Prof. Inge Schmitz-Feuerhake at the expert hearing on uranium effects in Ranua on November 7th, 2009
  4. 4.0 4.1 4.2 4.3 Norbert Suchanek: Kein Uranbergbau im Alentejo - Portugals radioaktives Erbe (November 2009)
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Treena Lenthall and Kim Stewart: http://www.roxstop-action.org/Booklet_16pp.pdf , November 17, 2009
  6. http://www.jadugoda.net/ , November 19, 2009
  7. http://jadugoda.net/Accidents/index.html , November 19 2009